Effects of Hydrogen Peroxide and Ultrasound on Biomass Reduction and Toxin Release in the Cyanobacterium, Microcystis aeruginosa
نویسندگان
چکیده
Cyanobacterial blooms are expected to increase, and the toxins they produce threaten human health and impair ecosystem services. The reduction of the nutrient load of surface waters is the preferred way to prevent these blooms; however, this is not always feasible. Quick curative measures are therefore preferred in some cases. Two of these proposed measures, peroxide and ultrasound, were tested for their efficiency in reducing cyanobacterial biomass and potential release of cyanotoxins. Hereto, laboratory assays with a microcystin (MC)-producing cyanobacterium (Microcystis aeruginosa) were conducted. Peroxide effectively reduced M. aeruginosa biomass when dosed at 4 or 8 mg L-1, but not at 1 and 2 mg L-1. Peroxide dosed at 4 or 8 mg L-1 lowered total MC concentrations by 23%, yet led to a significant release of MCs into the water. Dissolved MC concentrations were nine-times (4 mg L-1) and 12-times (8 mg L-1 H2O2) higher than in the control. Cell lysis moreover increased the proportion of the dissolved hydrophobic variants, MC-LW and MC-LF (where L = Leucine, W = tryptophan, F = phenylalanine). Ultrasound treatment with commercial transducers sold for clearing ponds and lakes only caused minimal growth inhibition and some release of MCs into the water. Commercial ultrasound transducers are therefore ineffective at controlling cyanobacteria.
منابع مشابه
Combined treatment of toxic cyanobacteria Microcystis aeruginosa with hydrogen peroxide and microcystin biodegradation agents results in quick toxin elimination.
Under some conditions the growth of toxic cyanobacteria must be controlled by treatment with algicidal compounds. Hydrogen peroxide has been proposed as an efficient and relatively safe chemical which can remove cyanobacteria from the environment selectively, without affecting other microorganisms. However, the uncontrolled release of secondary metabolites, including toxins may occur after such...
متن کاملToxin Release of Cyanobacterium Microcystis aeruginosa after Exposure to Typical Tetracycline Antibiotic Contaminants
The global usage of veterinary antibiotics is significant. Antibiotics can be released into aquatic environments and elicit toxic effects on non-target organisms. In this study, the growth characteristics and toxin release of the cyanobacterium Microcystis aeruginosa (M. aeruginosa) were examined to investigate the physiological effects of tetracycline antibiotics on aquatic life. Results showe...
متن کاملIncreasing Oxygen Radicals and Water Temperature Select for Toxic Microcystis sp
Pronounced rises in frequency of toxic cyanobacterial blooms are recently observed worldwide, particularly when temperatures increase. Different strains of cyanobacterial species vary in their potential to produce toxins but driving forces are still obscure. Our study examines effects of hydrogen peroxide on toxic and non-toxic (including a non-toxic mutant) strains of M. aeruginosa. Here we sh...
متن کاملThe Effects of Hydrogen Peroxide on the Circadian Rhythms of Microcystis aeruginosa
BACKGROUND The cyanobacterium Microcystis aeruginosa is one of the principal bloom-forming cyanobacteria present in a wide range of freshwater ecosystems. M. aeruginosa produces cyanotoxins, which can harm human and animal health. Many metabolic pathways in M. aeruginosa, including photosynthesis and microcystin synthesis, are controlled by its circadian rhythms. However, whether xenobiotics af...
متن کاملEffects of Cellular Metabolism and Viability on Metal Ion Accumulation by Cultured Biomass from a Bloom of the Cyanobacterium Microcystis aeruginosa.
The sorption of nickel, cadmium, and copper by cultured biomass from a naturally occurring bloom of Microcystis aeruginosa was demonstrated in two systems: cells suspended in culture medium and cells immobilized in alginate. Incubation in the absence of light, in the presence of metabolic inhibitors, and at 4 degrees C did not substantially decrease the copper accumulation by cells in culture m...
متن کامل